Volumen 6 - Número Especial Abril/Junio 2019

REVISTA INCLUSIONES

REVISTA DE HUMANIDADES Y CIENCIAS-SOCIALES

ISSN 0719-4705

EDITORIAL CUADERNOS DE SOFÍA

CUERPO DIRECTIVO

Directores Dr. Juan Guillermo Mansilla Sepúlveda Universidad Católica de Temuco, Chile Dr. Francisco Ganga Contreras Universidad de Los Lagos, Chile

Subdirectores Mg © Carolina Cabezas Cáceres Universidad de Las Américas, Chile Dr. Andrea Mutolo Universidad Autónoma de la Ciudad de México, México

Editor Drdo. Juan Guillermo Estay Sepúlveda Editorial Cuadernos de Sofía, Chile

Editor Científico Dr. Luiz Alberto David Araujo Pontificia Universidade Católica de Sao Paulo, Brasil

Editor Brasil Drdo. Maicon Herverton Lino Ferreira da Silva Universidade da Pernambuco, Brasil

Editor Ruropa del Este Dr. Alekzandar Ivanov Katrandhiev Universidad Suroeste "Neofit Rilski", Bulgaria

Cuerpo Asistente

Traductora: Inglés Lic. Pauline Corthorn Escudero Editorial Cuadernos de Sofía, Chile

Traductora: Portugués Lic. Elaine Cristina Pereira Menegón Editorial Cuadernos de Sofía, Chile

Portada Sr. Felipe Maximiliano Estay Guerrero Editorial Cuadernos de Sofía, Chile

COMITÉ EDITORIAL

Dra. Carolina Aroca Toloza Universidad de Chile, Chile

Dr. Jaime Bassa Mercado Universidad de Valparaíso, Chile

Dra. Heloísa Bellotto Universidad de Sao Paulo, Brasil

CUADERNOS DE SOFÍA EDITORIAL

Dra. Nidia Burgos Universidad Nacional del Sur, Argentina

Mg. María Eugenia Campos Universidad Nacional Autónoma de México, México

Dr. Francisco José Francisco Carrera Universidad de Valladolid, España

Mg. Keri González Universidad Autónoma de la Ciudad de México, México

Dr. Pablo Guadarrama González Universidad Central de Las Villas, Cuba

Mg. Amelia Herrera Lavanchy Universidad de La Serena, Chile

Mg. Cecilia Jofré Muñoz Universidad San Sebastián, Chile

Mg. Mario Lagomarsino Montoya Universidad Adventista de Chile, Chile

Dr. Claudio Llanos Reyes Pontificia Universidad Católica de Valparaíso, Chile

Dr. Werner Mackenbach Universidad de Potsdam, Alemania Universidad de Costa Rica, Costa Rica

Mg. Rocío del Pilar Martínez Marín Universidad de Santander, Colombia

Ph. D. Natalia Milanesio Universidad de Houston, Estados Unidos

Dra. Patricia Virginia Moggia Münchmeyer Pontificia Universidad Católica de Valparaíso, Chile

Ph. D. Maritza Montero *Universidad Central de Venezuela, Venezuela*

Dra. Eleonora Pencheva Universidad Suroeste Neofit Rilski, Bulgaria

Dra. Rosa María Regueiro Ferreira Universidad de La Coruña, España

Mg. David Ruete Zúñiga Universidad Nacional Andrés Bello, Chile

Dr. Andrés Saavedra Barahona Universidad San Clemente de Ojrid de Sofía, Bulgaria

REVISTA INCLUSIONES

Dr. Efraín Sánchez Cabra Academia Colombiana de Historia, Colombia

Dra. Mirka Seitz Universidad del Salvador, Argentina

Ph. D. Stefan Todorov Kapralov South West University, Bulgaria

COMITÉ CIENTÍFICO INTERNACIONAL

Comité Científico Internacional de Honor

Dr. Adolfo A. Abadía Universidad ICESI, Colombia

Dr. Carlos Antonio Aguirre Rojas Universidad Nacional Autónoma de México, México

Dr. Martino Contu Universidad de Sassari, Italia

Dr. Luiz Alberto David Araujo Pontificia Universidad Católica de Sao Paulo, Brasil

Dra. Patricia Brogna Universidad Nacional Autónoma de México, México

Dr. Horacio Capel Sáez Universidad de Barcelona, España

Dr. Javier Carreón Guillén Universidad Nacional Autónoma de México, México

Dr. Lancelot Cowie Universidad West Indies, Trinidad y Tobago

Dra. Isabel Cruz Ovalle de Amenabar *Universidad de Los Andes, Chile*

Dr. Rodolfo Cruz Vadillo Universidad Popular Autónoma del Estado de Puebla, México

Dr. Adolfo Omar Cueto Universidad Nacional de Cuyo, Argentina

Dr. Miguel Ángel de Marco Universidad de Buenos Aires, Argentina

Dra. Emma de Ramón Acevedo Universidad de Chile, Chile

CUADERNOS DE SOFÍA EDITORIAL

Dr. Gerardo Echeita Sarrionandia Universidad Autónoma de Madrid, España

Dr. Antonio Hermosa Andújar *Universidad de Sevilla, España*

Dra. Patricia Galeana Universidad Nacional Autónoma de México, México

Dra. Manuela Garau Centro Studi Sea, Italia

Dr. Carlo Ginzburg Ginzburg Scuola Normale Superiore de Pisa, Italia Universidad de California Los Ángeles, Estados Unidos

Dr. Francisco Luis Girardo Gutiérrez Instituto Tecnológico Metropolitano, Colombia

José Manuel González Freire Universidad de Colima, México

Dra. Antonia Heredia Herrera Universidad Internacional de Andalucía, España

Dr. Eduardo Gomes Onofre Universidade Estadual da Paraíba, Brasil

Dr. Miguel León-Portilla Universidad Nacional Autónoma de México, México

Dr. Miguel Ángel Mateo Saura Instituto de Estudios Albacetenses "Don Juan Manuel", España

Dr. Carlos Tulio da Silva Medeiros Diálogos em MERCOSUR, Brasil

+ Dr. Álvaro Márquez-Fernández Universidad del Zulia, Venezuela

Dr. Oscar Ortega Arango Universidad Autónoma de Yucatán, México

Dr. Antonio-Carlos Pereira Menaut Universidad Santiago de Compostela, España

Dr. José Sergio Puig Espinosa Dilemas Contemporáneos, México

Dra. Francesca Randazzo Universidad Nacional Autónoma de Honduras, Honduras

REVISTA INCLUSIONES

Dra. Yolando Ricardo Universidad de La Habana, Cuba

Dr. Manuel Alves da Rocha Universidade Católica de Angola Angola

Mg. Arnaldo Rodríguez Espinoza Universidad Estatal a Distancia, Costa Rica

Dr. Miguel Rojas Mix Coordinador la Cumbre de Rectores Universidades Estatales América Latina y el Caribe

Dr. Luis Alberto Romero CONICET / Universidad de Buenos Aires, Argentina

Dra. Maura de la Caridad Salabarría Roig Dilemas Contemporáneos, México

Dr. Adalberto Santana Hernández Universidad Nacional Autónoma de México, México

Dr. Juan Antonio Seda Universidad de Buenos Aires, Argentina

Dr. Saulo Cesar Paulino e Silva Universidad de Sao Paulo, Brasil

Dr. Miguel Ángel Verdugo Alonso Universidad de Salamanca, España

Dr. Josep Vives Rego Universidad de Barcelona, España

Dr. Eugenio Raúl Zaffaroni Universidad de Buenos Aires, Argentina

Dra. Blanca Estela Zardel Jacobo Universidad Nacional Autónoma de México, México

Comité Científico Internacional

Mg. Paola Aceituno Universidad Tecnológica Metropolitana, Chile

Ph. D. María José Aguilar Idañez Universidad Castilla-La Mancha, España

Dra. Elian Araujo Universidad de Mackenzie, Brasil

Mg. Rumyana Atanasova Popova Universidad Suroeste Neofit Rilski, Bulgaria

CUADERNOS DE SOFÍA EDITORIAL

Dra. Ana Bénard da Costa Instituto Universitario de Lisboa, Portugal Centro de Estudios Africanos, Portugal

Dra. Alina Bestard Revilla Universidad de Ciencias de la Cultura Física y el Deporte, Cuba

Dra. Noemí Brenta Universidad de Buenos Aires, Argentina

Dra. Rosario Castro López Universidad de Córdoba, España

Ph. D. Juan R. Coca Universidad de Valladolid, España

Dr. Antonio Colomer Vialdel Universidad Politécnica de Valencia, España

Dr. Christian Daniel Cwik Universidad de Colonia, Alemania

Dr. Eric de Léséulec INS HEA, Francia

Dr. Andrés Di Masso Tarditti Universidad de Barcelona, España

Ph. D. Mauricio Dimant Universidad Hebrea de Jerusalén, Israel

Dr. Jorge Enrique Elías Caro Universidad de Magdalena, Colombia

Dra. Claudia Lorena Fonseca Universidad Federal de Pelotas, Brasil

Dra. Ada Gallegos Ruiz Conejo Universidad Nacional Mayor de San Marcos, Perú

Dra. Carmen González y González de Mesa Universidad de Oviedo, España

Ph. D. Valentin Kitanov Universidad Suroeste Neofit Rilski, Bulgaria

Mg. Luis Oporto Ordóñez Universidad Mayor San Andrés, Bolivia

Dr. Patricio Quiroga Universidad de Valparaíso, Chile

REVISTA INCLUSIONES

Dr. Gino Ríos Patio Universidad de San Martín de Porres, Per

Dr. Carlos Manuel Rodríguez Arrechavaleta Universidad Iberoamericana Ciudad de México, México

Dra. Vivian Romeu Universidad Iberoamericana Ciudad de México, México

Dra. María Laura Salinas Universidad Nacional del Nordeste, Argentina

Dr. Stefano Santasilia Universidad della Calabria, Italia

Mg. Silvia Laura Vargas López Universidad Autónoma del Estado de Morelos, México

CUADERNOS DE SOFÍA EDITORIAL

Dra. Jaqueline Vassallo Universidad Nacional de Córdoba, Argentina

Dr. Evandro Viera Ouriques Universidad Federal de Río de Janeiro, Brasil

Dra. María Luisa Zagalaz Sánchez Universidad de Jaén, España

Dra. Maja Zawierzeniec Universidad Wszechnica Polska, Polonia

> Editorial Cuadernos de Sofía Santiago – Chile Representante Legal Juan Guillermo Estay Sepúlveda Editorial

Indización, Repositorios y Bases de Datos Académicas

Revista Inclusiones, se encuentra indizada en:

BIBLIOTECA UNIVERSIDAD DE CONCEPCIÓN

CUADERNOS DE SOFÍA EDITORIAL

ISSN 0719-4706 - Volumen 6 / Número Especial / Abril – Junio 2019 pp. 371-384

GEOMARKETING: NEW CONCEPT OR APPLIED BUSINESS TOOL?

GEOMARKETING: ¿NUEVO CONCEPTO O HERRAMIENTA DE NEGOCIO APLICADA?

Boris A. Tkhorikov Belgorod State University, Russia Tatyana B. Klimova Belgorod State University, Russia Olga A. Gerasimenko Belgorod State University, Russia Irina N. Titova Belgorod State University, Russia Margarita M. Ozerova Belgorod State University, Russia

Fecha de Recepción: 17 de noviembre de 2018 – Fecha Revisión: 09 de febrero de 2019 Fecha de Aceptación: 24 de marzo de 2019 – Fecha de Publicación: 01 de abril de 2019

Abstract

This study discusses the issues involved in the application of geomarketing as a decision-making tool for establishing or expanding a business. The development directions of the marketing mix concept with the modification of "the place" tool are offered. Several factors (i.e., geographical and marketing) used for analysis in conducting geomarketing research are described as well. A matrix grouping is presented as a comparative analysis of the most common geomarketing models, while their capabilities and limitations are highlighted. A methodical approach to conducting geomarketing research is developed, including a model for determining the probability of a client visiting a particular place (real estate object). Conclusions on the possibilities of using geomarketing for forming real estate objects from available locations for lease (purchase) and choice of the optimal variant are formulated. Results of authoring approbation are presented by the example of selecting a place for opening the city's new barbershop.

Keywords

Geomarketing – Geographical and marketing factors – Geomarketing models Location assessment of the real estate objects

Para Citar este Artículo:

Tkhorikov, Boris A.; Klimova, Tatyana B.; Gerasimenko, Olga A.; Titova, Irina N. y Ozerova, Margarita M. Geomarketing: new concept or applied business tool? Revista Inclusiones Vol: 6 num 2 (2019): 371-384.

BORIS A. TKHORIKOV / TATYANA B. KLIMOVA / OLGA A. GERASIMENKO / IRINA N. TITOVA / MARGARITA M. OZEROVA

Introduction

The geomarketing methodology is based on the dualism of marketing analysis and geographical simulation, visualization of a combination of market driving forces, and local territory factors. These factors allow the assessment of development possibilities of a particular business (company) in terms of choosing an office, warehouse, production or retail spaces location, and other possible contact points with customers. The accuracy of this factor assessment in the business function is constantly in conditions of high decision uncertainty and unsettled situation in the field of urban building, municipal taxes, and urban infrastructure development. These factors are capable of changing the commercial landscape of any urban area, there by possibly leading to the reduction of customer traffic or discrimination of maintenance costs of real estate in the medium term. The tools based on the geomarketing methodology are effective in solving such problems.

Purpose of Research

The traditional marketing concept of marketing mix contains the geomarketing that describes the tool element "Place" (Fig. 1).

Figure 1 Geomarketing in the marketing mix concept

Geomarketing aims to define and establish informative and unique description to each sphere of business characteristics related to the element "Place" thereby stimulating and (or) restraining the following company activities:

- Geographical factors – immutable real estate object parameters (e.g., area of the premises, location in the city, transport accessibility)

- Marketing factors – mutable activities related to geography (e.g., room design, goods, or services assortment).

This uniqueness is revealed using marketing research, marketing analysis, and data processing in geographic information systems (GIS).

The obtained data enables the solution of various business problems:

- Segmentation and ranking of urban areas by attractiveness for opening new outlets and choosing the optimal locations that consider the existing restrictions;

- Development (adjustment) of a marketing plan for an existing real estate objects;

- Geodemographic map production, in which the layers with socio-demographic characteristics of the people living or visiting selected area(considered temporary changes in their movement) are superimposed on a map with geographic objects;

- Targeted offline and online advertising plan, including areas located at a significant distance from the analyzed object;

-Consumer behavior analysis that considers the places they visited before or after the company is under review visit:

- Route study of the potential customer's movement to determine the possibilities of their change; and

- Optimization of logistic decisions for the traded goods delivery.

Methodology

A variety of tools are used to achieve the tasks listed. The common records mentioned in the scientific literature are the Huff Model of gravity¹; Reilly's gravity law of retail²; multiplicative interactive choice (MCI)³; McFadden's model (multinomial logic model (MLM)⁴; analog and customer mapping methods (customer spotting) developed by Applebaum⁵; central place theory (CPT) model suggested by W. Christaller⁶ and A. Losch⁷; allocation–distribution model⁸; Gautschi's model⁹; competing destinations model (CDM) proposed by Fotheringham¹⁰; spatial-diffusion model of Allaway, Black, Richard, and Mason based on diffusion theory¹¹. Reilly–Converse model¹²; spatial interaction model of Batty¹³; Luce's consumer choice axiom¹⁴ and Rust and Donthu's model¹⁵.

Table 1 presents the matrix grouping that illustrates the advantages and limitations of the listed models. Its use in business cannot be called common in all varieties of geomarketing tools. This situation is due to the fact that the choice of geomarketing tools

- ⁵ W. Applebaum, Patterns of Food Distribution in a Metropolis. Super Market Institute. 1966.
- ⁶ W. Christaller, Central Places in Southern Germany. Englewood Cliffs. 1993.

D. L. Huff, "A Probabilistic Analysis of Shopping Center Trade Areas", Land Economics, num 39 (1963): 81-90 y V. D. Vinogradova; A. V. Molochko and V. A. Morozova, "Geomarketing opportunities to determine the optimal bank branch location (in the case of the branch network of Sberbank in Saratov city)", News of Saratov University, Earth Science Series, Vol: 18 num 1 (2018): 4-9.

W. J. Reilly, The law of Retail Gravitation (New York: 1931).

³ M. Nakanishi and L. G. Cooper, "Parameter Estimate for multiplicative Interactive Choice Model: Least Squares Approach", J. of Marketing Research, num 11 (1974): 303-311.

⁴ D. McFadden, "Conditional Logit Analysis of Qualitative Choice Behavior", Frontiers in Econometrics (1974): 105-142 y G. N. Boyarkin and O. G. Sheveleva, "Prospects for GIS using in marketing research", Omsk scientists - to the region (2016): 154-158.

⁷ A. Losch, The Economics of Location. New Haven. 1954.

⁸ E. A. Pustovalova and V. P. Chernov, "Comparative analysis of the placing a point of retail network methods, Modern economy, num 2 Vol: 62 (2015): 29-44.

⁹ D. A. Gautschi, "Specification of Patronage Models for Retail Center Choice", Journal of Marketing Research, num 18 (1981): 162-174.

A. S. Fortheringham, "A New Set of Spatial Interaction Models: The Theory of Competing Destinations", Environment and Planning, 15 (1983): 15-36.

¹¹ A. W. Allaway; W. C. Black; M. D. Richard and J. B. Mason, "Evolution of a Retail Market Area: An Event-History Model of Spatial Diffusion", Economic Geography (1992): 23-40. ¹² P. D. Converse, "New Laws of Retail Gravitation, J. of Marketing, num 14 (1949): 94-102.

¹³ M. Batty, "Reilly's Challenge: New Laws of Retail Gravitation Which Define Systems of Central Places", Environment and Planning, num 10 (1978): 185-219.

¹⁴ R. Luce, Individual Choice Behaviour. Nueva York. 1959.

¹⁵ R. T. Rust and N. Donthu, "Capturing Geographically Localized Misspecification Error in Retail Store Choice Models", J. of Marketing Research, num XXXII (1995): 103-110.

and their application in solving applied business problems for the majority of entrepreneurs is associated with particular challenges caused by insufficient professional competence.

Geomarketing Tools	Selling space size	Assortment	Travel time	Object distance	Attractiveness from the client	Customer benefit	Possibility to choose an individual set of	research parameters	Descriptors (identifiers) of	snopping centers Driving conditions in	transport	Content and limitations in model using
					3	0s of t	he 20th	cen	tury			
Reilly's model				+								It allows establishing the limits of the potential coverage of a retail store. However, the presence of only one variable, which does not accurately reflect the people's perception of the traveled distance and time investment, restricts the possibility of use.
W. Christaller's and A. Losch's model	+	+										It allows determining the trade zone border of the store on the basis of two factors: the rank of the store and its distance from each point of the studied city. Used for conditional division of the city into shopping areas by considering the size of competing shops.
			<u> </u>		60s	–70s o	of the 20	th ce	entury			
Huff model	+		+									Used for attractive estimating of retail outlet for residents and assessing the probability of visiting but failed to reflect the utility function of the goods for various customer categories.
Model of Nakanishi, Cooper(MCI)					+		+					Includes a wide range of variables, including the attractiveness parameters of retail outlet. The ability to set the parameters has caused the widespread popularity and its use. Moreover, a low accuracy of

									the obtained values are available.
McFadden's model				+					The resident's opinions of the studied areas on the attractiveness parameters are used for calculations. Does not imply the location study of relative points.
Model of Batty			+	+					It allows to approximately determine the shopping area boundaries of the competing stores by considering their geographical location. However, perceived attractiveness has low accuracy.
	1	1	1	80s	–90s c	of the 20th	century		
Gautschi's model							+	+	Covers a wide range of spatial parameters but no unique understanding of the driving conditions estimation in transport represented. Moreover, it has choice limitations of the study object.
Fotheringham's model			+		+				Attractiveness evaluation of the store is determined by calculating the average distance between the study object and alternative objects. The model is based exclusively on spatial variables.
Rust's and Donthu's model				+					Attractiveness evaluation of retail outlet organized by consumers interviewing in each area considering the sensitivity coefficient of consumers to the values of the attractiveness parameters.

Table 1Matrix grouping of the geomarketing models

Results and Discussion

The authors developed an approach to expand entrepreneurs' practice of using geomarketing by considering the following limitations: a sequence of stages and a

mathematical framework of choosing a real estate object for business use purposes or updating the company's marketing plan (Fig. 2).

Conducting algorithm of the geomarketing research

The marketing and geographical factors of the "Place" element, which have significant influence on a company's work, should be established *at the first stage*. The following factors are selected on the basis of one or a set of several instruments:

- Theoretical analysis - the identification of substantial relations and attitudes (including cause–effect) between various business aspects and often answers the question "why";

 Empirical analysis – the factor selection based on the personal experience of people interested in the results of the study or the performers and generally answers the question "how";

 Expert survey – the factor collection based on the competent specialist group opinions that mainly enables the determination of geomarketing factors, which will be relevant in the future; and

- Benchmarking –the study of competitors' activities to determine the factors and provides the positive experience in work.

At the second stage, the selected factors are ranked by significance (importance) using a sociological survey of the target audience (TA) representatives.

At the third stage, field research (e.g., business owners interviewing, covert observation, economic intelligence, and other methods) enables the collection of information and evaluation of the selected factors related to competing companies operating in the city.

At the fourth stage, an expert result assessment of the field research is recommended to determine the factors' validity by comparing their obtained receive values and current financial position of the competing companies. An acknowledged city specialist in the analyzed business field or representatives of friendly competing companies is preferred as an expert. Moreover, the procedures of the first three stages should be reconducted in case of discrepancy between the obtained assessment and actual economic situation of the competitor's majority. The results are also necessary for possible exceptions from the analysis of companies with marketing and geographical factor values that are atypical or significantly differ for the worse from the estimates of other companies that simultaneously demonstrate low (compared witho ther analysis objects) average monthly revenue. The presence of such companies reduces the forecast accuracy of the probability calculation of a TAto visit a place chosen to open a new business.

If the results of the fourth stage are correct, then *the fifth stage* (i.e., final stage) is the graphical data interpretation, which facilitates the formation of the potential real estate objects pool with the optimal combination of the necessary geographical factors and having the potential for development (i.e., marketing factors). If a geomarketing study was conducted for an existing property, then the obtained information can be used to pursue internal redevelopments, showcase decoration, adjust to a unique selling proposition (offer), and supplement promotion programs, among others.

The use of the author's model is proposed to determine the probability of a client visiting specific place (P_{ij}) to form a prospective real estate object pool from the ones available for rent (buying) and choose the optimal variant. The model is based on the principle of the geometric probability calculation, in which the ratio of the conventional circle area (S_{AC}) is calculated. This condition reflects the real estate object attractiveness (j) for TA(the circle radius will vary depending on the magnitude of geomarketing factors) to the other conventional circle area (S_{PC}), thereby covering the area of the highest

concentration of TA representatives in the city (i) and including the real estate object to be analyzed.

Therefore, the model assumes the following form:

$$P_{ij} = \frac{S_{AC}}{S_{PC}} \,, \, (1)$$

Where P_{ij} is the probability that a client located in zone *i* will select an object *j* located in the same zone (*i*).

 S_{AC} – The conventional circle area, which characterizes the potential attractiveness of the analyzed real estate object for target audience, is expressed in square meters (m²):

$$S_{AC} = \pi R_1^2 = \pi (\tau * k * \mu * \theta)^2$$
, (2)

Where R_1 is the circle radius and calculated as the product over the following conventional indicators values:

– "Distance of indifference" (τ) – the distance that TA representatives are ready to overcome from the public transport stop (parking) to the object, which is expressed in meters and calculated empirically.

– "Distance from the reference center" (k) – distance of the analyzed real estate object from the conventional reference center (proposed to use central area of the city), which is expressed through the coefficient (e.g., from 1,0 to 0,1) and calculated empirically or by an expert method.

– "Object size" (μ) – characteristics of marketing factors selected for the study (e.g., number of simultaneously working specialists and range of services) expressed through the coefficient (e.g., from 0,3 to 1), which is calculated empirically or by an expert method.

– "Object location" (θ) – the characteristic of the geographical factors chosen for the study, expressed through the coefficient (e.g., from 0,3 to 1) and calculated empirically.

 S_{PC} – the area of the conventional circle with the highest concentration of TA representatives in the city (3):

$$S_{PC} = \pi R_2^2, \qquad (3)$$

Where R_2 is the radius, which is defined as the average value between the distances from the reference center (*k*) to the competing companies used in geomarketing research, which is expressed in m² and determined empirically using GIS. Depending on the geographical features of the inhabited locality, another area may be selected analytically, including the highest number of potential customers.

The fundamental significance is the observance of inequality: $S_{PC} > S_{AC}$.

The results of the methodical approach approbation to geomarketing described in this study are characterized by the example of investigating the evaluation of the variants for opening barbershop buildings in Belgorod City.

Fashion trends and consumer preferences confidently stimulate the demand for such services, thereby enabling companies to survive even with the existing competition in the city barbershop market.

Stage 1. The combined application of theoretical and empirical analyses, expert survey, and benchmarking enabled the identification of marketing (N -5) and geographical factors (N -5) typical for barbershops and represented by the qualitative and quantitative indicator form.

Stage 2. Using the sociological survey in the questionnaire form (December 2018, N – 143, sampling error is 8% with P = 95%), the information necessary for the variational analysis of the importance and influence degree of 10geomarketing factors was collected through the TA representatives (Table 2).

		Ма	rketing fa	actors		Geographical factors					
Preference	Master (barber)	Barbershop service prices (average ticket)	Recording availability at convenient hours	Carrying out barbershop celebrations and	Barbershop interior	Convenient parking near the barbershop	City location of the barbershop	Barbershop location on the first floor	Large area barbershop	Barbershop location in the mall	
$\sum X_i$	615	459	558	388	485	306	458	317	341	305	
\bar{x}	4,3	3,2	3,9	2,7	3,4	2,1	3,3	2,2	2,4	2,1	
σ^2	1,27	1,53	1,71	2,59	1,76	1,78	1,97	2,45	1,49	1,47	
σ	1,12	1,238	1,307	1,608	1,327	1,335	1,402	1,566	1,221	1,212	
	6										
V_{σ}	26,1	38,5	33,5	59,3	39,1	62,4	43,8	70,6	51,2	56,8	

Table 2

Geomarketing factors of barbershop attractiveness (Belgorod)

Barbershop visitors are males within the age groups 22–29 (47%), 30–35 (24%), and 17–21 (21%) years old. The following factors strongly impact their consumer choice: master (barber), recording availability at convenient hours, average ticket, barbershop interior, and city location of the barbershop.

Stages 3–4. Evaluations of the barbershop (N - 10) are performed using the deterministic geomarketing factors. Some of the obtained results are as follows. Figure 3 shows a comparison of two barbershops with nearly identical geographic factors, including the opposite location of each other. However, the barbershop "Basot" has a low value in terms of a key marketing factor (i.e., "master (barber)") and its economic position is critical, thereby indicating the correctness of the selected geomarketing factors.

Figure 1

Comparison of the geomarketing factor characteristics and economic situation of two study objects

The result validity is confirmed by the owner of a successful barbershop ("Salt") in the city, which engages in continuous monitoring of the competitive environment. In addition, five objects, which received the lowest attractiveness estimate by the results of the sociological survey with low and atypical estimated values of most marketing and geographical factors, were excluded from further analysis.

Stage 5. A total of 15 objects were selected using online real estate search services.

 Potentially suitable for placing the barbershop in Belgorod City. The choice of the optimal variant is based on the probability of visiting each object.

The following values of the used conditional indicators are defined to calculate the size of the conventional circle, thereby reflecting the potential attractiveness of the analyzed real estate object for TA (S_{AC}):

- "Distance of indifference" (τ) (820 m) - determined during the experiment (February 2019), in which 29 volunteers (i.e., TA representatives) were offered to walk a certain distance in a straight line from the public transport stop to the conventional barbershop. The experiment was stopped after the subject reported to the observer first signs of fatigue and loss of interest, among others. Thereafter, all the results were grouped and averaged.

- "Distance from the reference center" (k)-expressed by the coefficient presented in Table 3 and characterizes the remoteness of the analyzed real estate objects from the Cathedral Square of Belgorod City. The interval of a 100m step was determined using an analytical method by considering the obtained value of the indicator "Distance of indifference."

	Distance intervals									
Meters	to 100	100– 199	200– 299	300– 399	400– 499	500– 599	600– 699	700– 799	800– 899	900 and more
The value of the coefficient	1	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1

Г	ab	le	3
---	----	----	---

Values of the indicator "Distance from the reference center"

– "Object size" (μ) and "object location" (θ) are expressed by the coefficients of geomarketing factors (Table 4).

Marketing factors		Geographical factors						
The number of the chairs, unite		The number of infrastructural	0					
	μ	facilities, units	Ø					
1	0,33	до 9	0,33					
2	0,66	9–18	0,66					
3	1,00	18–27	1,00					
4 and more	1,10	28 and more	1,33					

Table 4

Values of the geomarketing factors used in the calculation P_{ii}

The number of chairs directly influences such marketing factors as "master" (the number of the specialists working simultaneously) and "recording availability at convenient hours" (potential production capacity). These factors are important in selecting a barbershop for potential clients and a basis for determining the usable area barbershop at the rate of 5 m² per chair. Simultaneously, the results of the workload analysis of large barbershops with over three chairs are unambiguously specified at the marginal utility reduction of each additional chair, starting from the third.

The number of infrastructure (e.g., shops, sports clubs, banks, institutions providing public services, cafes, restaurants) located within a100m radius from the analyzed object was selected as a geographical factor. Field studies have shown that over 16 infrastructure facilities are located adjacent to the most successful barbershops within a100m radius. Moreover, this factor is associated with the current behavior pattern of barbershop customers. That is, before or after the visit to the barber, customers aim to visit other establishments.

The area of the conventional circle with the highest concentration of barbershop TA representatives (S_{PC}) in Belgorod City was 3108678.5 m²; the circle radius (995 m) is determined by using GIS to calculate the average distance from the town central square (Cathedral Square) to 10 barbershops.

Overall, only 3of the 15 prospects were initially selected for the new barbershop locations, where real estate leases are slightly different in the S_{PC} zone. The visit probability was calculated for each prospect (Table 5), the best option of which is object number 2 (Fig. 2).

The number in Figure 4	Real estate object address	The number of the chairs, (units)/µ	The number of infrastructure objects (units)/θ	Distance from the reference center (м)/ <i>k</i>	Probability of visiting
1	78 b	4/1,1	15/0,66	533/0,5	0,031
	Preobrazhenkaya st.				
2	93 Belgorodski	4/1,1	34/1,33	808/0,2	0,047
	prospekt				
3	4 Gostenskaya st.	3/1,0	9/0,33	915/0,1	0,001

Table 5

Probability calculation of a client visiting a particular place (P_{ij})

for a new barbershop opening

Conclusion

An approximately identical real estate object group managed to select the variant that is an optimal location to open a new barbershop. This research indicates the possibility of using a combination of marketing and geographical factors for choosing a real estate object, the values of which are determined based on the successful competitor functioning analysis.

Full-fledged competitive intelligence gathering is conducted in the geomarketing research process, thereby possibly forming the basis for a new business development plan. In terms of evaluative judgments, the unity of the methodological base of the proposed approach enables the flexible establishment of tools for conducting geomarketing research, including those related to the socioeconomic and geographical features of any territory.

References

Allaway, A. W.; Black, W. C.; Richard, M. D. and Mason, J. B., "Evolution of a Retail Market Area: An Event-History Model of Spatial Diffusion". Economic Geography (1992): 23-40

Applebaum, W. Patterns of Food Distribution in a Metropolis. Super Market Institute. 1966.

Batty, M. "Reilly's Challenge: New Laws of Retail Gravitation Which Define Systems of Central Places". Environment and Planning, num 10 (1978): 185-219.

Boyarkin, G. N. and Sheveleva, O. G., "Prospects for GIS using in marketing research". Omsk scientists – to the region (2016): 154-158.

Christaller, W. Central Places in Southern Germany. Englewood Cliffs. 1993.

Converse, P. D. "New Laws of Retail Gravitation. J. of Marketing, num 14 (1949): 94-102.

Fortheringham, A. S. "A New Set of Spatial Interaction Models: The Theory of Competing Destinations". Environment and Planning, 15 (1983): 15-36.

Gautschi, D. A. "Specification of Patronage Models for Retail Center Choice". Journal of Marketing Research, num 18 (1981): 162-174.

Huff, D. L. "A Probabilistic Analysis of Shopping Center Trade Areas". Land Economics, num 39 (1963): 81-90.

Losch, A. The Economics of Location. New Haven. 1954.

Luce, R. Individual Choice Behaviour. Nueva York. 1959.

McFadden, D. "Conditional Logit Analysis of Qualitative Choice Behavior". Frontiers in Econometrics (1974): 105-142.

Nakanishi, M. and Cooper, L. G. "Parameter Estimate for multiplicative Interactive Choice Model: Least Squares Approach". J. of Marketing Research, num 11 (1974): 303-311.

Pustovalova, E. A. and Chernov, V. P. "Comparative analysis of the placing a point of retail network methods. Modern economy, num 2 Vol: 62 (2015): 29-44.

Reilly, W. J. The law of Retail Gravitation. New York: 1931.

Rust, R. T. and Donthu, N. "Capturing Geographically Localized Misspecification Error in Retail Store Choice Models". J. of Marketing Research, num XXXII (1995): 103-110.

Vinogradova, V. D.; Molochko, A. V. and Morozova, V. A., "Geomarketing opportunities to determine the optimal bank branch location (in the case of the branch network of Sberbank in Saratov city)". News of Saratov University, Earth Science Series, Vol: 18 num 1 (2018): 4-9.

CUADERNOS DE SOFÍA EDITORIAL

Las opiniones, análisis y conclusiones del autor son de su responsabilidad y no necesariamente reflejan el pensamiento de la **Revista Inclusiones**.

La reproducción parcial y/o total de este artículo debe hacerse con permiso de **Revista Inclusiones.**